

Zulassungsstelle für Bauprodukte und Bauarten Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-10/0170 vom 26. November 2018

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Upat Ankerbolzen MAX

Mechanischer Dübel zur Verankerung im Beton

Upat Vertriebs GmbH Bebelstraße 11 79108 Freiburg im Breisgau DEUTSCHLAND

Upat

18 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330232-00-0601

ETA-10/0170 vom 7. Mai 2015

Europäische Technische Bewertung ETA-10/0170

Seite 2 von 18 | 26. November 2018

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z70147.18 8.06.01-138/16

Europäische Technische Bewertung ETA-10/0170

Seite 3 von 18 | 26. November 2018

Besonderer Teil

1 Technische Beschreibung des Produkts

Der Upat Ankerbolzen MAX ist ein Dübel aus galvanisch verzinktem Stahl (MAX) oder aus nichtrostendem Stahl (MAX A4) oder aus hochkorrosionsbeständigem Stahl (MAX C), der in ein Bohrloch gesetzt und durch kraftkontrollierte Verspreizung verankert wird.

Die Produktbeschreibung ist in Anhang A dargestellt.

Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 2
Verschiebungen (statische und quasi-statische Einwirkungen)	Siehe Anhang C 5
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Siehe Anhang C 4 und C 5

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Siehe Anhang C 3

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330232-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

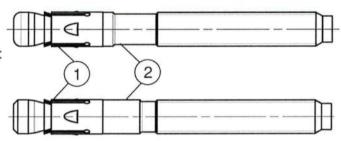
Z70147,18 8.06.01-138/16

Europäische Technische Bewertung ETA-10/0170

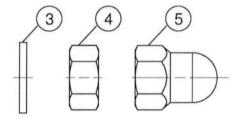
Seite 4 von 18 | 26. November 2018

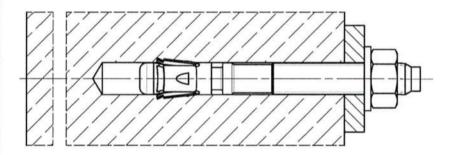
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

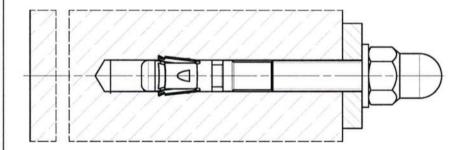
Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.


Ausgestellt in Berlin am 26. November 2018 vom Deutschen Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter

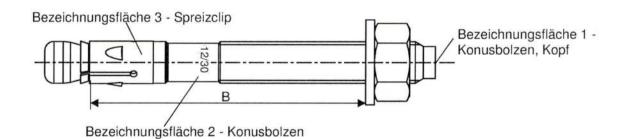



Konusbolzen, kaltumgeformte Ausführung:



Konusbolzen, spanend hergestellt:

- ① Spreizclip
- Konusbolzen (kaltmassivumgeformt oder gedreht)
- 3 Unterlegscheibe
- 4 Sechskantmutter
- ⑤ Upat MAX Hutmutter


(Abbildungen nicht maßstäblich)

Upat Ankerbolzen MAX, MAX A4, MAX C

Produktbeschreibung Einbauzustand Anhang A 1

Produktkennzeichnung und Buchstabenkürzel:

Produktkennzeichnung, Beispiel: MAX 12/30 A4

Firmenkennung | Dübeltyp Gewindegröße / max. Dicke des Anbauteils (t_{fix})

auf Bezeichnungsfläche 2 oder 3 Kennzeichnung A4 oder C auf Bezeichnungsfläche 2

MAX: Kohlenstoffstahl, galvanisch verzinkt

MAX A4: nichtrostender Stahl

MAX C: hochkorrosionsbeständiger Stahl

Tabelle A2.1: Buchstabenkürzel auf Bezeichnungsfläche 1:

Markieru	ng	(a)	(b)	(c)	(d)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(K)
Max. t _{fix}		5	10	15	20	5	10	15	20	25	30	35	40	45	50
	M6			•		45	50	55	60	65	70	75	80	85	90
	M8	40	45		-	50	55	60	65	70	75	80	85	90	95
	M10	45	50	55	60	65	70	75	80	85	90	95	100	105	110
B ≥ [mm]	M12	55	60	65	70	75	80	85	90	95	100	105	110	115	120
777 TA	M16	70	75	80	85	90	95	100	105	110	115	120	125	130	135
	M20					105	110	115	120	125	130	135	140	145	150
	M24	-				130	135	140	145	150	155	160	165	170	175
	An								23070-11111						
Markierui	ng	(L)	(M)	(N)	(O)	(P)	(R)	(S)	(T)	(U)	(V)	(W)	(X)	(Y)	(Z)
Max. t _{fix}		60	70	80	90	100	120	140	160	180	200	250	300	350	400
	M6	100	110	120	130	140	160	180	200	220	240	290	340	390	440
	M8	105	115	125	135	145	165	185	205	225	245	295	345	395	445
	M10	120	130	140	150	160	180	200	220	240	260	310	360	410	460
B ≥ [mm]	M12	130	140	150	160	170	190	210	230	250	270	320	370	420	470
	M16	145	155	165	175	185	205	225	245	265	285	335	385	435	485
	M20	160	170	180	190	200	220	240	260	280	300	350	400	450	500
	M24	185	195	205	215	225	245	265	285	305	325	375	425	475	525

Berechung vorhandener her von eingebauten Ankern:

vorhandene hef = B(gemäß Tabelle A2.1) - vorhandenes tfix

Dicke des Anbauteils t_{fix} ist inklusive der Dicke der Befestigungsplatte t und z.B. der Dicke von Ausgleichsschichten $t_{M\"{o}rtel}$ oder anderen nicht tragenden Schichten

(Abbildungen nicht maßstäblich)

Upat Ankerbolzen MAX, MAX A4, MAX C

Produktbeschreibung

Produktkennzeichnung und Buchstabenkürzel

Anhang A 2

Produktabmessungen

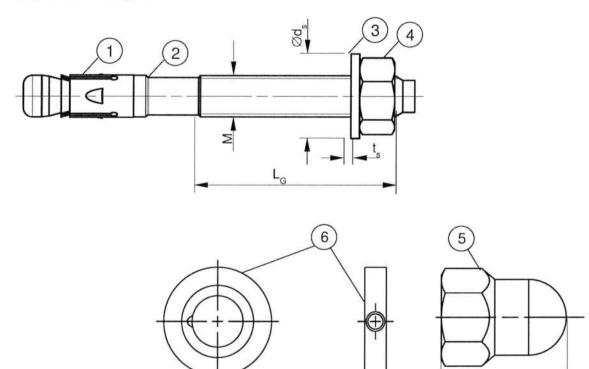


Tabelle A3.1: Abmessungen [mm]

Teil	Bezeichnung MAX, MAX A4, MAX C									
ren	Bezeichnung	,		М6	M8	M10	M12	M16	M20	M24
1	Spreizclip	Blechdicke		8,0	1,3	1,4	1,6	2,	4	3,0
	Vanuahalaan	Gewin	degröße M	6	8	10	12	16	20	24
2	Konusbolzen	L _G		10	19	26	31	40	50	57
3	Lintarlaggabaiha	ts	≥	1	,4	1,8	2,3	2,	7	3,7
3	Unterlegscheibe	$\emptyset d_s$		11	15	19	23	29	36	43
4 & 5	Sechskantmutter	Schlüs	selweite	10	13	17	19	24	30	36
5	/ Upat MAX Hutmutter	L _D	≥	-		22	27	33		-
6	Upat Verfüllscheibe FFD	t	=			6		7	8	10

(Abbildungen nicht maßstäblich)

Upat Ankerbolzen MAX, MAX A4, MAX C

Produktbeschreibung

Abmessungen

Anhang A 3

Spezifizierung des Verwendungszwecks Beanspruchung der Verankerung: MAX, MAX A4, MAX C Größe **M6 M8** M10 M12 M16 M20 M24 Statische und quasi-statische Belastungen Gerissener und ungerissener Beton Brandbeanspruchung C1 Seismische Einwirkung für C21) Leistungskategorie

Verankerungsgrund:

- Verdichteter bewehrter und unbewehrter Normalbeton ohne Fasern (gerissen und ungerissen) gemäß EN 206: 2013
- Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206: 2013

Anwendungsbedingungen (Umweltbedingungen):

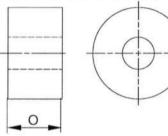
- Bauteile unter den Bedingungen trockener Innenräume (MAX, MAX A4, MAX C)
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (MAX A4, MAX C)
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (MAX C)
 Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Meerwasser oder der Bereich der Spritzzone von Meerwasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. in Rauchgas Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden)

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. In den Konstruktionszeichnungen ist die Position der Dübel anzugeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.)
- Bemessung der Verankerungen erfolgt nach EN 1992-4:2018 und Technical Report TR 055
- Anwendungen mit einer effektiven Verankerungstiefe h_{ef} < 40 mm und h_{min} ≥ 80 mm und < 100 mm sind auf statisch unbestimmte Bauteile beschränkt (z.B. leichte abgehängte Decken in trockenen Innenräumen) und über die ETA abgedeckt

Upat Ankerbolzen MAX, MAX A4, MAX C	
Verwendungszweck Spezifikatonen	Anhang B 1

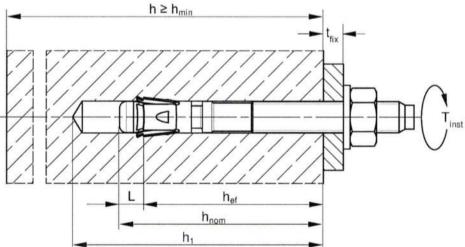
¹⁾ MAX C: Gilt nur für kaltmassivumgeformte Ausführung (gemäß Anhang A1)


Tabelle B2.1: Montagekennwerte									
Cräße					MAX, N	//AX A4,	MAX C		
Größe			M6	M8	M10	M12	M16	M20	M24
Nomineller Bohrdurchmesser	d ₀ =		6	8	10	12	16	20	24
Maximaler Schneidendurchmesser mit Hammerbohrer oder Hohlbohrer	al .	[mm]	6,40	8,45	10.45	12,5	16,5	20,55	24,55
Maximaler Schneidendurchmesser mit Diamantbohrer	- d _{cut,max}		-	8,15	10,45	12,25	16,45	20,50	24,40
Gesamtlänge des Ankers im Beton	h _{nom} ≥ (L)		46,5 (6,5)	44,5 (9,5)	52,0 (12)	63,5 (13,5)	82,5 (17,5)	120 (20)	148,5 (23,5)
[1				١	/orhande	enes h _{ef}	+ L = h _{no}	im.	
Bohrlochtiefe am tiefsten Punkt	h₁ ≥				h _{nom} + 5			h _{nom}	+ 10
Durchmesser des Durchgangslochs im Anbauteil	$d_f \leq$	[mm]	7	9	12	14	18	22	26
Montagedrehmoment	T _{inst} =	[Nm]	8	20	45	60	110	200	270

O = [mm]

Setzlehre MAX SL-H für Anker mit Upat MAX Hutmutter:

Überstand nachdem der Konusbolzen durchgeschlagen wurde (für Anwendung


mit Upat Hutmutter gemäß Anhang B6)

12

16

20

hef = Effektive Verankerungstiefe

t_{fix} = Dicke des Anbauteils

h₁ = Bohrlochtiefe am tiefsten Punkt

h = Dicke des Betonbauteils

h_{min} = Minimale Dicke des Betonbauteils h_{nom} = Gesamtlänge des Ankers im Beton

T_{inst} = Montagedrehmoment

(Abbildungen nicht maßstäblich)

Upat Ankerbolzen MAX, MAX A4, MAX C

Verwendungszweck Montageparameter Anhang B 2

Größe			MAX, MAX A4, MAX C									
Große			М6	M8	M10	M12	M16	M20	M24			
Minimaler Randabstand												
Ungerissener Beton	0		45	40	45	55	65	95	135			
Gerissener Beton	– C _{min}		45	40	45			85	100			
Minimaler Achsabstand	S _{min}	[mm]	1		ger	näß Anha	nang B4					
Minimale Dicke des Betonbauteils	h _{min}			80		100	140	160	200			
Dicke des Betonbauteils	h≥		31	max. {h _m	in; h ₁ 1) + 3	0}	max. {	h _{min} ; h ₁ 1) +	2 · d _o }			
Minimaler Achsabstand					222 - GIV			Pass Pive				
Ungerissener Beton			35	40	40	50	65	95	100			
Gerissener Beton	- S _{min}	35	33	35	40	50	65	93				
Minimaler Randabstand	C _{min}	[mm]			ger	näß Anha	ng B4					
Minimale Dicke des Betonbauteils	h _{min}			80		100	140	160	200			
Dicke des Betonbauteils	onbauteils h≥		1	max. {h _{mi}	n; h ₁ 1) + 30	0}	max. $\{h_{min}; h_1^{(1)} + 2 \cdot d_o\}$					
Minimale Spaltfläche						THE WO						
Ungerissener Beton	. 1	r-1000	5,1	18	37	54	67	100	117,			

¹⁾ h₁ gemäß Anhang B2

Gerissener Beton

Spaltversagen für minimale Achs- und Randabstände in Abhängigkeit der effektiven Verankerungstiefe hef

Für die Berechnung des minimalen Achsabstands und des minimalen Randabstands der Anker in Kombination mit verschiedenen Einbindetiefen und -dicken des Betonbauteils ist die folgende Gleichung zu erfüllen:

1,5

12

27

40

50

77

87,5

 $A_{sp,req} < A_{sp,ef}$

A_{sp,req} = erforderliche Spaltfläche A_{sp,ef} = effektive Spaltfläche (gemäß Anhang B4)

Upat Ankerbolzen MAX, MAX A4, MAX C

Verwendungszweck

Mindestdicke der Betonbauteile, minimale Achs- und Randabstände

Anhang B 3

Tabelle B4.1: Effektive Spaltfläche A_{sp,ef} bei einer Betonbauteildicke h > h_{ef} + 1,5 ⋅ c und h ≥ h_{min}

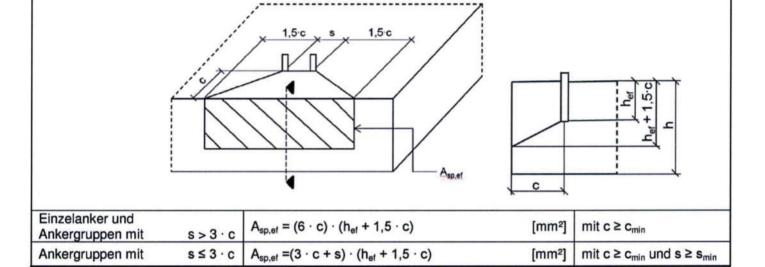
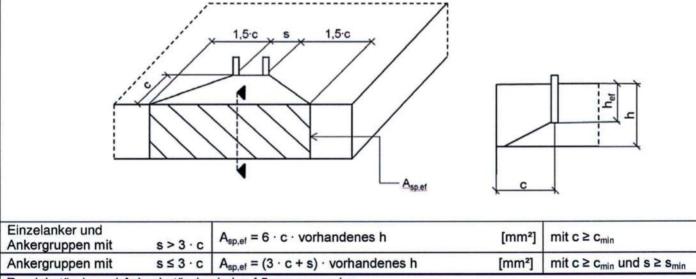



Tabelle B4.2: Effektive Spaltfläche A_{sp,ef} bei einer Betonbauteildicke h ≤ h_{ef} + 1,5 · c and h ≥ h_{min}

Randabstände und Achsabstände sind auf 5 mm zu runden

(Abbildungen nicht maßstäblich)

Upat Ankerbolzen MAX, MAX A4, MAX C	
Verwendungszweck Mindestdicke der Betonbauteile, minimale Achs- und Randabstände	Anhang B 4

Montageanleitung:

- · Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile Ausnahme: Upat MAX Hutmutter
- · Hammer-, Hohl- oder Diamantbohren gemäß Anhang B5
- Bohrloch senkrecht +/- 5° zur Oberfläche des Verankerungsgrundes erstellen, ohne die Bewehrung zu beschädigen
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt

Montageanleitung: Bohren und Bohrlochreinigung

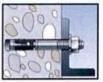
Montageanieitung: Bonren und Bonriochreinigung							
		Möglichkeiten von Bohren und Reinig	ung				
Hammerbohrer	B-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8	1: Bohrloch erstellen	2: Bohrloch reinigen				
Hohlbohrer		1: Bohrloch erstellen mit Hohlbohrer und Staubsauger	-				
Diamantbohrer, nur bei Einwirkungen ohne Erdbeben- beanspruchung und ≥ Bohr Ø 8		1: Bohrloch erstellen	2: Bohrloch reinigen				

Anhang B 5

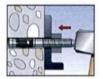
Verwendungszweck Montageanleitung

Upat Ankerbolzen MAX, MAX A4, MAX C

Montageanleitung: Anker setzen


HUTMUTTER:

3: Anker setzen

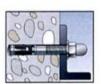

4: Anker mit dem Montagedrehmoment T_{inst} verspreizen

Abgeschlossene Montage

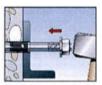
Upat MAX HUTMUTTER:

Möglichkeit 1: Durchsteckmontage mit Setzlehre SL-H:

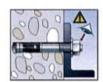
3: Anker mit Setzlehre setzen


4: Überstand prüfen

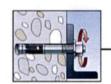
5: Upat MAX Hutmutter aufdrehen



6: Anker mit dem Montagedrehmoment T_{inst} verspreizen



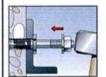
7: Abgeschlossene Montage


Möglichkeit 2: Durchsteckmontage mit Sechskantmutter:

3: Anker setzen

4: Position prüfen: Ein Gewindegang Überstand über die Mutter

4.1: Mutter entfernen


<u>Upat VERFÜLLSCHEIBE FFD optional z.B. bei Anwendungen unter Erdbebenbeanspruchung C2 oder zur Minimierung des Lochspiels:</u>

Der Ringspalt zwischen Bolzen und Anbauteil darf mit Mörtel verfüllt sein (Druckfestigkeit ≥ 50 N/mm² z.B. UPM 33) nach Schritt 7 (zur Minimierung des Lochspiels).

Optional

Die Verfüllscheibe wäre zusätzlich zur Standard-Unterlegscheibe einzusetzen.

Die Dicke der Verfüllscheibe muss bei t_{fix} berücksichtigt werden. Senkung in der Verfüllscheibe zeigt in Richtung Anbauteil.

Upat Ankerbolzen MAX, MAX A4, MAX C

Verwendungszweck Montageanleitung Anhang B 6

Tabelle C1.1: Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi statischer Belastung

C== 0.				MAX, MAX A4, MAX C								
Größe			M6	M	3	M10	M12	M16	M20	M24		
Stahlversagen												
Charakteristischer	MAX	- N _{Rk,s}	[kN]	7,6	16		28,3	43,2	67,0	123,3	176,7	
Widerstand	MAX A4/C	100		11,4	17	,0	29,0	44,3	70,6	124,9	183,6	
Teilsicherheitsbeiwert		γ _{Ms} 1)	[-]					1,5				
Herausziehen				SCAPE CO								
Effektive Verankerungs Berechnung		h _{ef}	[mm]	40	35 - < 45	45	40 - 60	50 - 70	65 - 85	100	125	
Charakteristischer Wid in gerissenem Beton C	20/25	- N	רואוז	1,5	5,5	8	13	20		_ 2)		
Charakteristischer Wid ungerissenem Beton C		— N _{Rk,p}	[kN]	10,5	14	6	20	22		100		
		-	C25/30					1,12				
Erhöhungsfaktoren für N _{Rk,p} für gerissenen und ungerissenen			C30/37		1,22							
)// ·	C35/45					1,32				
Beton	33611611	Ψc.	C40/50		1,41							
			C45/55					1,50				
			C50/60					1,58	111.7			
Montagebeiwert		γinst	[-]					1,0				
Betonbruch und Spal	Declaration of the second						19,			n and the		
Faktor für ungerissene		$k_1 = k_{ucr,N}$	[-]					11,0				
Faktor für gerissenem	0.100.009A169A10161	$k_1 = k_{cr,N}$	0.000					7,7				
Charakteristischer Ach		S _{cr,N} C _{cr,N}	[mm]	3 · h _{ef}								
	Charakteristischer Randabstand		[······]					1,5 · h _{ef}				
Achsabstand		S _{cr,sp}						2 · c _{cr,sp}				
	andabstand bei h = 80				2,4.	n _{ef}	2·h _{ef}	-				
Randabstand bei $h = 1$	-					2,4·h _{ef}	2·h _{ef}		-			
Randabstand bei h = 120 Randabstand bei h = 140		- C-	[mm]	40				2,1·h _{ef}				
		C _{cr,sp}		40	2·h	ef	1,9·h _{ef}				2	
Randabstand bei h = 1	d bei h = 160						, o mer	1,5·h _{ef}	2·h _{ef}	2,4·h _{ef}	-	
Randabstand bei $h = 2$	00									_, · · · · ef	2,2·hef	

¹⁾ Sofern andere nationale Regelungen fehlen
²⁾ Herausziehen nicht maßgebend

Anhang C 1

Tabelle C2.1: Charakteristische Werte der	Quertragfähigkeit unter statischer und quasi -
statischer Belastung	

0-10-						MAX, N	IAX A4	MAX				
Größe				М6	M8	M10	M12	M16	M20	M24		
Stahlversagen ohne Hebelarm												
Charakteristischer Widerstand M	AX	V ⁰ _{Rk,s}	רואוז	5,9	13,6	21,4	30,6	55,0	81,4	110,		
Marakteristischer Widerstand	AX A4/C	V Rk,s	[kN]	8,8	16,8	26,5	38,3	69,8	106,3	148,		
Teilsicherheitsbeiwert		γ _{Ms} 1)		1,25								
Duktilitätsfaktor		k ₇	[-]				1,0					
Stahlversagen mit Hebelarm und	Pryoutversag	en			2	7. 00						
Effektive Verankerungstiefe für Berechnung		h _{ef}	[mm]	40	45	60	70	85	100	125		
Obereliterietisches Bienement	MAX	0	[6]	11,4	26	52	92	233	513	865		
Charakteristisches Biegemoment	MAX A4/C	M ⁰ _{Rk,s}	[INM]	10,7	29	59	100	256	519	898		
Faktor für Pryoutversagen		k ₈	[-]	2,6	2,8	3	,2	3,0	2,6	2,4		
Effektive Verankerungstiefe für Berechnung		h _{ef}	[mm]		35 - < 45	40 - < 60	50 - < 70	65 - < 85				
0	MAX	0		-	20	44	92	184	1	-		
Charakteristisches Biegemoment	MAX A4/C	$M^0_{Rk,s}$	[Nm]		21	45	100	193				
Faktor für Pryoutversagen		k ₈	[-]		2,5	2,6	3,1	3,2				
Teilsicherheitsbeiwert		γ _{Ms} 1)					1,25					
Duktilitätsfaktor		k ₇	[-]				1,0					
Betonkantenbruch												
Effektive Dübellänge		$I_{t} =$	[mm]				h _{ef}					
Dübeldurchmesser		d _{nom}		6	8	10	12	16	20	24		

¹⁾ Sofern andere nationale Regelungen fehlen

Upat Ankerbolzen MAX, MAX A4, MAX C

Leistungen
Charakteristische Quertragfähigkeit

Anhang C 2

Tabelle C3.1: Charakteristische	Werte der Zugtragfähigkeit	unter Brandbeanspruchung

0-50-						MAX, MA	X A4, MA	X C				
Größe				М6	M8	M10	M12	M16	M20	M24		
		h _{ef} ≥	[mm]	40	35 / 45	40 / 60	50 / 70	65 / 85	100	125		
Charakteristischer Widerstand Stahlversagen		R30		$0.6^{1)} / 0.9^{2)}$	1,4	2,8	5,0	9,4	14,7	21,1		
	N.I.	R60		$0.4^{1)} / 0.9^{2)}$	1,2	2,3	4,1	7,7	12,0	17,3		
	$N_{Rk,s,fi}$	R90		$0.3^{1)} / 0.9^{2)}$	0,9	1,9	3,2	6,0	9,4	13,5		
		R120		$0,2^{1)}/0,7^{2)}$	0,8	1,6	2,8	5,2	8,1	11,6		
Charakteristischer Widerstand	N _{Rk,c,fi}	R30 - R90	[kN]		7,7 ·	h _{ef} ^{1,5} · (20) ^{0,5} · h _{ef} / 2	200 / 1000	00			
Betonbruch	TINO,II -	R120		$7.7 \cdot h_{ef}^{1.5} \cdot (20)^{0.5} \cdot h_{ef} / 200 / 1000 \cdot 0.8$								
Charakteristischer Widerstand Herausziehen	N _{Rk,p,fi}	R30 R60 R90		0,4	0,9 / 2,0 0,8 / 2,0 0,5 / 2,0	2,2 / 3,3	3,0 / 5,0	4,5 / 6,8	8,6	12,0		
nerauszienen		R120		0,3	0,3 / 1,6	1,7 / 2,6	2,4 / 4,0	3,6 / 5,4	6,9	9,6		

¹⁾ MAX gvz

Tabelle C3.2: Charakteristische Werte der Quertragfähigkeit unter Brandbeanspruchung

(Größe		R	30	F	160
MAX, MAX	A4, MAX	C	V _{Rk,s,fi,30} [kN]	M ⁰ _{Rk,s,fi,30} [Nm]	V _{Rk,s,fi,60} [kN]	M ⁰ _{Rk,s,fi,60} [Nm]
M6		40	$0,6^{1)}/0,9^{2)}$	$0,5^{1)}/0,2^{2)}$	$0,4^{1)}/0,9^{2)}$	$0,3^{1)}/0,1^{2)}$
M8		35	1,8	1,4	1,6	1,2
M10		40	3	,6	2,9	3,0
M12	h _{ef} ≥	50	6,3	7,8	4,9	6,4
M16		65	11,7	19,9	9,1	16,3
M20		100	18,2	39,0	14,2	31,8
M24		125	26,3	67,3	20,5	55,0

(Größe		R	90	R	120
MAX, MA	X A4, MA	X C	V _{Rk,s,fi,90} [kN]	M ⁰ _{Rk,s,fi,90} [Nm]	V _{Rk,s,fi,120} [kN]	M ⁰ _{Rk,s,fi,120} [Nm]
M6		40	$0,3^{1)}/0,9^{2)}$	$0,2^{1)}/0,1^{2)}$	$0,2^{1)}/0,7^{2)}$	$0,2^{1)}/0,1^{2)}$
M8		35	1,3	1,0	1,2	0,8
M10		40	2,2	2,4	1,9	2,1
M12	h _{ef} ≥	50	3,5	5,0	2,8	4,3
M16		65	6,6	12,6	5,3	11,0
M20	Maria E	100	10,3	24,6	8,3	21,4
M24		125	14,8	42,6	11,9	37,0

¹⁾ MAX gvz 2) MAX A4 / C

Tabelle C3.3: Minimale Achsabstände und minimale Randabstände für Anker unter Brandbeanspruchung für Zug- und Quertragfähigkeit

0-50-			MAX, MAX A4, MAX C									
Größe			M6	M8	M10	M12	M16	M20	M24			
Achsabstand	S _{min}			Anhang B3								
Randabstand	C _{min}	[mm]		bei mel	nrseitiger B	$c_{min} = 2 \cdot randbeans$		_{min} ≥ 300 mn	n			

Upat Ankerbolzen MAX, MAX A4, MAX C

Leistungen

Charakteristische Werte unter Brandbeanspruchung

Anhang C 3

²⁾ MAX A4 / C

Tabelle C4.1: Charakteristische Werte der Zug- und Quertragfähigkeit unte	er
Erdbebenbeanspruchung C1	

0.00			MAX, MAX A4, MAX C								
Größe			М6	M8	M10	M12	M16	M20	M24		
Dübellänge	L _{max}			167	186	221	285	394	477		
Effektive Verankerungstiefe	h _{ef}	[mm]	1.57	45	40 - 60	50 - 70	65 - 85	100	125		
Stahlversagen											
Charakteristische Zugtragfähigkeit C1	N _{Rk,s,eq,C1}	[kN]		16,0	27,0	41,0	66,0	111,0	150,0		
Teilsicherheitsbeiwert	YMs,C1	[-]	-	1,5							
Herausziehen									Line (c)		
Charakteristische Zugtragfähigkeit in gerissenem Beton C 1	$N_{Rk,p,eq,C1}$	[kN]	-	4,6	8,0	16,0	28,2	36,0	50,3		
Montagebeiwert	γinst	[-]				1,	,0	•			
Stahlversagen ohne Hebelarm											
Charakteristische Quertragfähigkeit C1	V _{Rk,s,eq,C1}	[kN]		11	17	27	47	56	69		
Teilsicherheitsbeiwert	γ _{Ms,C1} 1)	[-]	-			1,	25				

¹⁾ Sofern andere nationale Regelungen fehlen

Table C4.2: Charakteristische Werte der Zug- und Quertragfähigkeit unter Erdbebenbeanspruchung C2

C-#0-					MAX, M	IAX A4,	MAX C1)		
Größe			M6	M8	M10	M12	M16	M20	M24
Dübellänge	L _{max}	[mm]			186	221	285	394	
Stahlversagen									
Charakteristische Zugtragfähigkeit C2	N _{Rk,s,eq,C2}	[kN]			27	41	66	111	
Teilsicherheitsbeiwert	γ _{Ms,C2} ²⁾	[-]							
Herausziehen									
	h _{ef}	[mm]			60	70	85	100	
Charakteristische Zugtragfähigkeit in gerissenem Beton C2	$N_{Rk,p,eq,C2}$	[kN]			5,1	7,4	21,5	30,7	•
	h _{ef}	[mm]	-		40-59	50-69	65-84		
	N _{Rk,p,eq,C2}	[kN]			2,7	4,4	16,4		
Montagebeiwert	Yinst	[-]				1,0			
Stahlversagen ohne Hebelarm							A		
	h _{ef}	[mm]			60	70	85	100	
0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 20	V _{Rk,s,eq,C2}	[kN]			10,0	17,4	27,5	39,9	
Charakteristische Quertragfähigkeit C2	h _{ef}	20			40-59	50-69	65-84		
	V _{Rk,s,eq,C2}	[kN]			7,0	12,7	22,0	79	-
Teilsicherheitsbeiwert	γ _{Ms,C2} ²⁾	[-]				1,25			
Faktor für Ringpalt	α_{gap}					0,5 (1,0)	3)		

MAX C: Gilt nur für kaltmassivumgeformte Ausführung (gemäß Anhang A1)
 Sofern andere nationale Regelungen fehlen

Upat Ankerbolzen MAX, MAX A4, MAX C

Anhang C 4

Charakteristische Werte von Zug und Querwiderständen unter Erdbebeneinfluss

³⁾ Wert in der Klammer ist für gefüllte Ringspalte zwischen der Ankerstange und dem Durchgangsloch im Anbauteil gültig. Die Verwendung der Upat Verfüllscheibe FFD ist notwendig.

Tabelle C5.1:	Verschiebungen	unter Zuglast
---------------	----------------	---------------

0	MAX, MAX A4, MAX C									
Größe	M6	M8	M10	M12	M16	M20	M24			
Verschiebungen – Faktor für Zuglast ¹⁾					in Sign					
S 5-14	0,13	0,22	0,12	0,09	0,08	0,07	0,05			
δ _{NO} - Faktor	1,00	0,78	0,40	0,19	0,09		0,07			
[mm/kN]	0,16	0,07	0,05	0,	06	0,05	0,04			
δ _{N∞} - Faktor	0,24	0,29	0,21	0,14	0,10	0,06	0,05			

Tabelle C5.2: Verschiebungen unter Querlast

C== 0=		MAX									
Größe		М6	M8	M10	M12	M16	M20	M24			
Verschiebungen – Faktor für Querlast ²⁾											
	[0,6	0,35	0,37	0,27	0,10	0,09	0,07			
δ _{V0} - Faktor	[mm/kN]	0,9	0,52	0,55	0,40	0,14	0,15	0,11			
		MAX A4, MAX C									
S Follow	Com on /L. N. 17	0,6	0,23	0,19	0,18	0,10	0,11	0,07			
δ _{V∞} - Faktor	[mm/kN]	0,9	0,27	0,22	0,16	0,11	0,05	0,09			

¹⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0}} - Faktor \cdot N_{\text{ED}}$

 $\delta_{N\infty} = \delta_{N\infty} - Faktor \cdot N_{ED}$

(N_{ED}: Bemessungswert der vorhandenen Zuglast)

2) Berechnung der effektiven Verschiebung:

 $\delta_{\text{V0}} = \delta_{\text{V0}} - \text{Faktor} \cdot \text{V}_{\text{ED}}$

 $\delta_{V\infty} = \delta_{V\infty} - Faktor \cdot V_{ED}$

(V_{ED}: Bemessungswert der vorhandenen Querlast)

Tabelle C5.3: Verschiebungen unter **Zuglast** für seismische Einwirkung **C2** für alle Verankerungstiefen

0-10-			MAX, MAX A4, MAX C							
Größe			М6	M8	M10	M12	M16	M20	M24	
Verschiebungen DLS	$\delta_{N,eq(DLS)}$	[]	[mm] -		2,7	4,4		5,6		
Verschiebungen ULS	δ _{N,eq (ULS)}	[mm]			11,5	13,0	12,3	14,4	-	

Tabelle C5.4: Verschiebungen unter **Querlast** für seismische Einwirkung **C2** für alle Verankerungstiefen

0.40-			MAX, MAX A4, MAX C							
Größe			М6	M8	M10	M12	M16	M20	M24	
Verschiebungen DLS	δ _{V,eq (DLS)}	f1			4,1	4,7	5,5	4,8	-	
Verschiebungen ULS	δ _{V,eq (ULS)}	[mm]		-		7,8	10,1	11,2		

Upat Ankerbolzen MAX, MAX A4, MAX C

Leistungen

Verschiebungen unter Zug und Querlast

Anhang C 5