

sind Stahlblechformteile speziell für den Holzrahmenbau zur Übertragung von Zugkräften. Bei bestehenden oder neuen Holzkonstruktionen einsetzbar. Ermöglicht hohe Lasten aus dem Holz in den Beton zu übertragen. Die Holzkonstruktionen, die abhebende Kräfte aufzunehmen haben, werden an Bodenplatten oder Fundamenten mit HTT Zugankern befestigt. Die lange Rückenplatte ermöglicht eine Platzierung der notwendigen Anzahl CNA4,0×I Kammnägel unter Einhaltung der erforderlichen Nagelabstände am Holzständer, auch wenn eine waagerechte Schwelle unter diesem liegt. Eine Alternative zu den Zugankern HTT sind Zuganker, einund zweiteilig sowie Winkelverbinder AKR95, AKR135 oder AKR285.

ETA-07/0285, DE-DoP-e07/0285.pdf

EIGENSCHAFTEN

Material

Stahl:

G90 according to ASTM A-653 S350GD gemäß EN 10346

Korrosionsschutz:

275 g/m2 beidseitig - entspricht einer Zinkschicht von ca. 20 % µm

Vorteile

Der untere anzuschließende Schenkel benötigt keinen Druckkontakt zum Boden

Simpson Strong-Tie GmbH Hubert-Vergölst-Str. 6-14 D-61231 Bad Nauheim tel: +49 (6032) 86 80- 0 / fax : +49 (6032) 86 80- 199

Alle Angaben gelten ausschließlich für die genannten Produkte.

Copyright by Simpson Strong-Tie®

HTT - Zuganker

page

Technisches Datenblatt HTT - ZUGANKER

ANWENDUNG

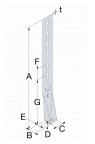
Anwendbare Materialien

Auflager:

Beton, Stahl, Holz, Holzwerkstoffe

Aufzulagerndes Bauteil:

Holz, Holzwerkstoffe


Anwendungsbereich

- Mit diesem Zuganker können Holzkonstruktionen optimal mit Betonunterkonstruktionen verbunden werden, wie es z.B. verstärkt im Holzrahmenbau der Fall ist.
- Ein Verbund durch die Decke hindurch ermöglicht das Weiterleiten der Zuglasten vom Dach bis ins Fundament

TECHNISCHE DATEN

Abmessungen

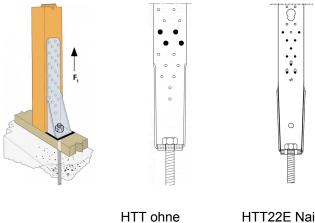
Artikel	Abmessungen [mm]						Schenkel A			Schenkel B		
	Α	В	С	D	Е	t	Ø4,7	Ø5	Ø21	Ø17,5	Ø18	#25
HTT4	314	60	64	11.4	35	2.8	18	-	-	1	-	-
HTT5	403	56	64	11.4	35	2.8	26	-	-	1	-	-
HTT22E	558	60	63	12	33	3	-	31	3	-	1	-
HTT31	790	60	90	12	33	3	-	41	6	-	-	1

Tragfähigkeiten

Artikel	Verbindungsmittel				Charakteristische Tragfäigkeit - Holz C24 an Beton [kN]							
	Schenkel A		Schenkel B		R _{1.k} (ohne US50/50/8 Unterlegsch.)							
	Anzahl	Тур	Anzahl	Тур	CNA4,0x40	CNA4,0x50	CNA4,0x60	CSA5,0x40	CSA5,0x50			
HTT4	n	CNA	1	M16	min [(n-3.5)*1.83; 18.6; 43/kmod]	min [(n-3.5)*2.22; 24.7; 43/kmod]	min [(n-3.5)*2.36; 31; 43/kmod]	-	-			
HTT5	n	CNA	1	M16	min [(n-3.5)*1.83; 18.6; 43/kmod]	min [(n-3.5)*2.22; 24.7; 43/kmod]	min [(n-3.5)*2.36; 31; 43/kmod]	-	-			
HTT22E	n	CNA/ CSA	1	M16	min[(n-3,5)*1,83; 39,6; 57,5/kmod]	min[(n-3,5)*2,22; 42,3; 57,5/kmod]	min[(n-3,5)*2,36; 53,1; 57,5/kmod]	min [(n-3.5)*2,25; 106,7; 57,5/kmod]	min [(n-3.5)*2,63; 138,2; 57,5/kmod]			
HTT31	n	CNA/ CSA	1	M24	min[(n-4)*1,83; 144,1; 85,1/kmod)	min[(n-4)*2,22; 144,1; 85,1/kmod)	min[(n-4)*2,36; 144,1; 85,1/kmod)	min[(n-4)*2,25; 144,1; 85,1/kmod)	min[(n-4)*2,63; 144,1; 85,1/kmod)			

Die Anzahl der Verbindungselemente (n) kann vom Anwender gewählt werden. Die Kapazität wird dann mit dieser Zahl n berechnet. Bei den HTT4 und 5 sind die 4 Löcher oberhalb der seitlichen Streben stets mitzuverwenden.

- (1) es sind stets die 3 Langlöcher und die untersten 2 Löcher mitzuverwenden
- (2) es sind stets 4 CSA5,0x80 im unteren Bereich der Länglöcher einzubauen.


INSTALLATION

Befestigung

- Die Befestigung am Holzständer erfolgt mit CNA4,0xl Kammnageln oder CSA5,0xl Schrauben.
- Befestigung an Fundament oder Bodenplatte: mit Schwerlastdübeln oder Steinschrauben

Befestigung

Der Verbinder wird mit einer geeigneten Bolzenanker am Beton befestigt. Der vertikale Schenkel im Verbinder wird mit 4mm CNA-Nägeln befestigt.

Unterlegscheibe

HTT22E Nail pattern

TECHNICAL NOTES